838 research outputs found

    Class-based Rough Approximation with Dominance Principle

    Get PDF
    Dominance-based Rough Set Approach (DRSA), as the extension of Pawlak's Rough Set theory, is effective and fundamentally important in Multiple Criteria Decision Analysis (MCDA). In previous DRSA models, the definitions of the upper and lower approximations are preserving the class unions rather than the singleton class. In this paper, we propose a new Class-based Rough Approximation with respect to a series of previous DRSA models, including Classical DRSA model, VC-DRSA model and VP-DRSA model. In addition, the new class-based reducts are investigated.Comment: Submitted to IEEE-GrC201

    Study on factors influencing coal freight rate based on VAR Model

    Get PDF

    Data-driven Piecewise Affine Decision Rules for Stochastic Programming with Covariate Information

    Full text link
    Focusing on stochastic programming (SP) with covariate information, this paper proposes an empirical risk minimization (ERM) method embedded within a nonconvex piecewise affine decision rule (PADR), which aims to learn the direct mapping from features to optimal decisions. We establish the nonasymptotic consistency result of our PADR-based ERM model for unconstrained problems and asymptotic consistency result for constrained ones. To solve the nonconvex and nondifferentiable ERM problem, we develop an enhanced stochastic majorization-minimization algorithm and establish the asymptotic convergence to (composite strong) directional stationarity along with complexity analysis. We show that the proposed PADR-based ERM method applies to a broad class of nonconvex SP problems with theoretical consistency guarantees and computational tractability. Our numerical study demonstrates the superior performance of PADR-based ERM methods compared to state-of-the-art approaches under various settings, with significantly lower costs, less computation time, and robustness to feature dimensions and nonlinearity of the underlying dependency

    Towards a Reliable Framework of Uncertainty-Based Group Decision Support System

    Full text link
    This study proposes a framework of Uncertainty-based Group Decision Support System (UGDSS). It provides a platform for multiple criteria decision analysis in six aspects including (1) decision environment, (2) decision problem, (3) decision group, (4) decision conflict, (5) decision schemes and (6) group negotiation. Based on multiple artificial intelligent technologies, this framework provides reliable support for the comprehensive manipulation of applications and advanced decision approaches through the design of an integrated multi-agents architecture.Comment: Accepted paper in IEEE-ICDM2010; Print ISBN: 978-1-4244-9244-

    Equivalence Checking of Quantum Finite-State Machines

    Full text link
    In this paper, we introduce the model of quantum Mealy machines and study the equivalence checking and minimisation problems of them. Two efficient algorithms are developed for checking equivalence of two states in the same machine and for checking equivalence of two machines. They are applied in experiments of equivalence checking of quantum circuits. Moreover, it is shown that the minimisation problem is proved to be in \textbf{PSPACE}
    corecore